WELLINGTON PRIMARY SCHOOL CALCULATIONS POLICY

WELLINGTON PRIMARY SCHOOL

PROGRESSION THROUGH CALCULATIONS FOR THE FOUR OPERATIONS

The aim is that children use mental methods when appropriate, but for calculations that they cannot do in their heads, they use an efficient written method accurately and with confidence. This will allow them to become more fluent in mathematics, which will result in an improved ability to reason and to problem solve.
Pupils who grasp methods rapidly should be challenged through being offered rich and sophisticated problems before any acceleration through new content.
By the end of Year 6, all children will have a secure written method for each of the four operations, underpinned by a concrete understanding of place value.

The use of practical equipment and pictures should be ingrained into the teaching of mathematics:
\square as equipment/skills for children to use:
\square as visual aids for children in the classroom - displays/working wall;
\square as part of teacher modelling/demonstration when introducing new concepts/topics;
\square Finally, more able children should use equipment to ensure they can explain why/how (fluency and reasoning).
Note: If a child becomes out of sync with the phase(s) appropriate to their age, please consult the SENCo.
Children should always be encouraged to:

- approximate their answers before calculating, in order to be able to reflect on their answer:
- check their answers after calculation using an appropriate strategy;
- consider if a mental calculation would be appropriate before using a written method. For example, would you use decomposition for 1001-998?

Addition	
Year 1	Year 1/2
Using number bonds to 10 (Dienes and multi-link cubes) $12+3$	(initially without crossing tens barrier) Using the pictoral and concrete (Dienes) alongside the abstract, with lines of 2 squares in length to represent tens and single dots to represent ones (ones dots should be, when writing 8 for example, 2 squares wide and 4 squares down). This method should be used alongside Dienes equipment to support understanding. Always begin by adding the ones.
$12+3=15$	Once children: \square can add a multiple of ten to a 2-digit number mentally (e.g. 80+11), \square understand place value (tens and ones) they are ready for adding pairs of 2-digit numbers that do cross the tens boundary (e.g. $58+43$)

Addition
 Year 5/6

Add several numbers with different numbers of decimal places (including money and measures)
Tenths, hundredths and thousandths should be correctly aligned, with the decimal point lined up vertically including in the answer row. $17.422+84.65+32.7=$

Numbers should be ordered, with the largest at the top.

Zeros should be added into any empty decimal places, to show there is no value to add.

Subtraction	
Year 1	
Understanding concepts Visual representation and understanding of one less, take away. Physically removing an object from a set of objects. Use pictures/marks E.g. Sam spent 4p. What was his change from 10p? Record as 10-4=6 Count backwards using a number line (with numbers on), progressing to blank number lines. $7-4=3$ Sin Use practical equipment to understand 'difference between'. Eg 'I am 3 years older than my sister'. Understand subtraction as the inverse of addition - = signs and missing numbers. Eg $7-3=*, 7-*=4, *-3=4$	Using number bonds to 10 (Dienes and multi-link cubes) $13-5$ $13-5=8$ $\begin{array}{r} 10-5=5 \\ 5+3=8 \end{array}$

Subtraction

Year 2/3

Use Dienes equipment to support understanding of place value and carrying.
Use Dienes equipment to show the need for exchanging.

Move on to decomposition supported by pictoral and Dienes.
Because you can't subtract 7 ones from 5, exchange one ten for ten ones (draw the additional ones on and cross out a ten).

Subtraction

Year 3/4
Use Dienes equipment; pictures; hundreds, tens, ones counters to support understanding.
When secure with exchanging, progress to standard method of column subtraction - decomposition. Begin subtracting from least significant digit (right hand side).

Ensure children recognise subtraction is not commutative. In column subtraction, 6 can't be subtracted from 4, so exchanging is required. Reinforce understanding of place value by explaining value of digits being exchanged. Eg 14-6 = and then 60-40=

Subtraction

Year 5/6

Subtracting with increasingly large and more complex numbers and decimal values.

$7169-372.5=$

Mental method may be more appropriate for: Using a number line to 'count on' where suitable.

$$
\text { E.g. } 7005-1983=
$$

$$
\text { Or } £ 20-£ 13.65=
$$

Mental Subtraction

Year 3/4/5/6
Mental methods may be more appropriate when working with money. Eg: Use number lines to 'count on' and find change/find the difference.

Begin to understand division as grouping. 12 children get into teams of 4 to play a game. How many teams are there?

Relate halving to doubling using practical equipment. Ensure children begin to have instant recall of facts and understand doubling (multiplication) and halving (division) are inverse operations.

Division
Year 1/2

Understand division as the inverse of multiplication.
Children should use lots of practical apparatus, arrays and picture representations.
E.g. $20 \div 5=4$

A CD costs $£ 5$. How many CDs can I buy with $£ 20$?
Use Numicon to visualise division.

How many groups of five are in twenty?

Mental methods (supported by jotting)

This represents $20 \div 5$, posed as how many groups of 5 are in 20? There are 20 children in the choir.
They sit in rows of 5 . How many rows are there?

1) Draw five dots in a row.
2) Continue drawing dots in each column until 20 have been drawn.
3) Count the number of rows. Pupils should also show that the same array can represent $20 \div 4=5$ if grouped vertically.

Rather than a formal written method, the number line should be used to develop understanding of division as grouping. Count from zero in equal jumps of the divisor to find out the how many groups there are. (4 groups of 5)

Division

Year 5/6
Once conceptual understanding is strong.

Working through, from left to right. How many groups of 4 hundreds in 800 ?
Reinforce understanding of place value:
How many groups of 4 tens are in 50?
(one, with one remainder)... this one ten is carried to the ones making it 12 rather than 2. (This is because one ten = ten ones)

Multiplication		
Year 4/5/6		
Multiplying by a one-digit number	Multiplying by a two-digit number	Multiplying decimals
(1) Jenny sells 2476 oranges. Mark sells 3 times as many oranges as Jenny. How many oranges does Mark sell? $2476 \times 3=$? Step 4 Multiply 2 thousands by 3 . 2 thousands $\times 3=6$ thousands Add I thousand. Mark sells 7428 oranges.	A ship carries petrol in 27 barrels. Each barrel contains 32 litres of petrol. What is the total volume of petrol carried on the ship? $27 \times 32=$? Step I Multiply 2 tens 7 ones by 2 . 7 ones $\times 2=14$ ones $=1 \text { ten } 4 \text { ones }$ 2 tens $\times 2=4$ tens Add. 4 tens +1 ten 4 ones $=5$ tens 4 ones $27 \times 2=54$ Step 2 Multiply 2 tens 7 ones by 30 . 7 ones $\times 30=210$ ones $=21 \text { tens }$ $=2 \text { hundreds I ten }$ 2 tens $\times 30=60$ tens $=6 \text { hundreds }$ Add. 6 hundreds +2 hundreds I ten $=8$ hundreds 1 ten $27 \times 30=810$ Step 3 Add. $\begin{aligned} & 54+810=864 \\ & 27 \times 32=864 \end{aligned}$ The ship carries 864 litres of petrol.	When multiplying by decimals, numbers should be aligned to the right hand side and the decimal point placed within the answer lines.

Negative Numbers

Find the difference between negative and positive integers.
e.g. the difference between 5 and -7 .

Use a vertical number line to 'count on' to find the difference.

Use efficient jumps: from the negative number to zero, and then zero to the positive number.

For increases and decreases within negative numbers, use a number line with the 'zero' placed on to support understanding.

Show addition/increases (from negative to positive) using a vertical number line.
Encourage children to use efficient jumps, rather than counting every integer.

Show subtraction/decreases (from positive to negative) in a similar way The temperature was $2^{\circ} \mathrm{C}$ and decreased by $7^{\circ} \mathrm{C}$.

